MakeItFrom.com
Menu (ESC)

333.0 Aluminum vs. EN 1.6554 Steel

333.0 aluminum belongs to the aluminum alloys classification, while EN 1.6554 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 333.0 aluminum and the bottom bar is EN 1.6554 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 90 to 110
230 to 280
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 1.0 to 2.0
17 to 21
Fatigue Strength, MPa 83 to 100
380 to 520
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
73
Tensile Strength: Ultimate (UTS), MPa 230 to 280
780 to 930
Tensile Strength: Yield (Proof), MPa 130 to 210
550 to 790

Thermal Properties

Latent Heat of Fusion, J/g 520
250
Maximum Temperature: Mechanical, °C 170
420
Melting Completion (Liquidus), °C 590
1460
Melting Onset (Solidus), °C 530
1420
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 100 to 140
40
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26 to 35
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 83 to 110
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 10
3.4
Density, g/cm3 2.8
7.9
Embodied Carbon, kg CO2/kg material 7.6
1.7
Embodied Energy, MJ/kg 140
22
Embodied Water, L/kg 1040
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.1 to 4.6
140 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 290
810 to 1650
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
24
Strength to Weight: Axial, points 22 to 27
27 to 33
Strength to Weight: Bending, points 29 to 34
24 to 27
Thermal Diffusivity, mm2/s 42 to 57
11
Thermal Shock Resistance, points 11 to 13
23 to 27

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 81.8 to 89
0
Carbon (C), % 0
0.23 to 0.28
Chromium (Cr), % 0
0.7 to 0.9
Copper (Cu), % 3.0 to 4.0
0 to 0.3
Iron (Fe), % 0 to 1.0
94.6 to 97.3
Magnesium (Mg), % 0.050 to 0.5
0
Manganese (Mn), % 0 to 0.5
0.6 to 0.9
Molybdenum (Mo), % 0
0.2 to 0.3
Nickel (Ni), % 0 to 0.5
1.0 to 2.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 8.0 to 10
0 to 0.6
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.25
0
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0

Comparable Variants