MakeItFrom.com
Menu (ESC)

336.0 Aluminum vs. C94900 Bronze

336.0 aluminum belongs to the aluminum alloys classification, while C94900 bronze belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 336.0 aluminum and the bottom bar is C94900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 75
110
Elongation at Break, % 0.5
17
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 28
41
Tensile Strength: Ultimate (UTS), MPa 250 to 320
300
Tensile Strength: Yield (Proof), MPa 190 to 300
130

Thermal Properties

Latent Heat of Fusion, J/g 570
190
Maximum Temperature: Mechanical, °C 210
170
Melting Completion (Liquidus), °C 570
980
Melting Onset (Solidus), °C 540
910
Specific Heat Capacity, J/kg-K 890
370
Thermal Expansion, µm/m-K 19
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
14
Electrical Conductivity: Equal Weight (Specific), % IACS 95
14

Otherwise Unclassified Properties

Base Metal Price, % relative 11
32
Density, g/cm3 2.8
8.8
Embodied Carbon, kg CO2/kg material 7.9
3.4
Embodied Energy, MJ/kg 140
55
Embodied Water, L/kg 1010
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.1 to 1.6
41
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 580
72
Stiffness to Weight: Axial, points 15
6.9
Stiffness to Weight: Bending, points 51
18
Strength to Weight: Axial, points 25 to 32
9.4
Strength to Weight: Bending, points 32 to 38
11
Thermal Shock Resistance, points 12 to 16
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 79.1 to 85.8
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Copper (Cu), % 0.5 to 1.5
79 to 81
Iron (Fe), % 0 to 1.2
0 to 0.3
Lead (Pb), % 0
4.0 to 6.0
Magnesium (Mg), % 0.7 to 1.3
0
Manganese (Mn), % 0 to 0.35
0 to 0.1
Nickel (Ni), % 2.0 to 3.0
4.0 to 6.0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 11 to 13
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
4.0 to 6.0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.35
4.0 to 6.0
Residuals, % 0
0 to 0.8