MakeItFrom.com
Menu (ESC)

355.0 Aluminum vs. EN 1.4123 Stainless Steel

355.0 aluminum belongs to the aluminum alloys classification, while EN 1.4123 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 355.0 aluminum and the bottom bar is EN 1.4123 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 72 to 83
220 to 250
Elastic (Young's, Tensile) Modulus, GPa 71
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Tensile Strength: Ultimate (UTS), MPa 200 to 260
720 to 810

Thermal Properties

Latent Heat of Fusion, J/g 470
280
Maximum Temperature: Mechanical, °C 180
840
Melting Completion (Liquidus), °C 620
1450
Melting Onset (Solidus), °C 560
1410
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 150 to 170
23
Thermal Expansion, µm/m-K 22
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38 to 43
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 120 to 140
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.0
4.2
Embodied Energy, MJ/kg 150
62
Embodied Water, L/kg 1120
120

Common Calculations

Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 20 to 27
26 to 29
Strength to Weight: Bending, points 28 to 33
23 to 25
Thermal Diffusivity, mm2/s 60 to 69
6.3
Thermal Shock Resistance, points 9.1 to 12
26 to 29

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 90.3 to 94.1
0
Carbon (C), % 0
0.35 to 0.5
Chromium (Cr), % 0 to 0.25
14 to 16.5
Copper (Cu), % 1.0 to 1.5
0
Iron (Fe), % 0 to 0.6
76.7 to 84.6
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
1.0 to 2.5
Nickel (Ni), % 0
0 to 0.5
Nitrogen (N), % 0
0.1 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 4.5 to 5.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Vanadium (V), % 0
0 to 1.5
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0