MakeItFrom.com
Menu (ESC)

355.0 Aluminum vs. Grade 25 Titanium

355.0 aluminum belongs to the aluminum alloys classification, while grade 25 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is 355.0 aluminum and the bottom bar is grade 25 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
110
Elongation at Break, % 1.5 to 2.6
11
Fatigue Strength, MPa 55 to 70
550
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
40
Shear Strength, MPa 150 to 240
600
Tensile Strength: Ultimate (UTS), MPa 200 to 260
1000
Tensile Strength: Yield (Proof), MPa 150 to 190
940

Thermal Properties

Latent Heat of Fusion, J/g 470
410
Maximum Temperature: Mechanical, °C 180
340
Melting Completion (Liquidus), °C 620
1610
Melting Onset (Solidus), °C 560
1560
Specific Heat Capacity, J/kg-K 890
560
Thermal Conductivity, W/m-K 150 to 170
7.1
Thermal Expansion, µm/m-K 22
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38 to 43
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 120 to 140
2.0

Otherwise Unclassified Properties

Density, g/cm3 2.7
4.5
Embodied Carbon, kg CO2/kg material 8.0
43
Embodied Energy, MJ/kg 150
700
Embodied Water, L/kg 1120
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.7 to 5.9
110
Resilience: Unit (Modulus of Resilience), kJ/m3 150 to 250
4220
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
35
Strength to Weight: Axial, points 20 to 27
62
Strength to Weight: Bending, points 28 to 33
50
Thermal Diffusivity, mm2/s 60 to 69
2.8
Thermal Shock Resistance, points 9.1 to 12
71

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 90.3 to 94.1
5.5 to 6.8
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.25
0
Copper (Cu), % 1.0 to 1.5
0
Hydrogen (H), % 0
0 to 0.013
Iron (Fe), % 0 to 0.6
0 to 0.4
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.5
0
Nickel (Ni), % 0
0.3 to 0.8
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Palladium (Pd), % 0
0.040 to 0.080
Silicon (Si), % 4.5 to 5.5
0
Titanium (Ti), % 0 to 0.25
86.7 to 90.6
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0 to 0.4