MakeItFrom.com
Menu (ESC)

356.0 Aluminum vs. 8090 Aluminum

Both 356.0 aluminum and 8090 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is 356.0 aluminum and the bottom bar is 8090 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
67
Elongation at Break, % 2.0 to 3.8
3.5 to 13
Fatigue Strength, MPa 55 to 75
91 to 140
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
25
Tensile Strength: Ultimate (UTS), MPa 160 to 240
340 to 490
Tensile Strength: Yield (Proof), MPa 100 to 190
210 to 420

Thermal Properties

Latent Heat of Fusion, J/g 500
400
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 620
660
Melting Onset (Solidus), °C 570
600
Specific Heat Capacity, J/kg-K 900
960
Thermal Conductivity, W/m-K 150 to 170
95 to 160
Thermal Expansion, µm/m-K 21
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40 to 43
20
Electrical Conductivity: Equal Weight (Specific), % IACS 140 to 150
66

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
18
Density, g/cm3 2.6
2.7
Embodied Carbon, kg CO2/kg material 8.0
8.6
Embodied Energy, MJ/kg 150
170
Embodied Water, L/kg 1110
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.2 to 8.2
16 to 41
Resilience: Unit (Modulus of Resilience), kJ/m3 70 to 250
340 to 1330
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
50
Strength to Weight: Axial, points 17 to 26
34 to 49
Strength to Weight: Bending, points 25 to 33
39 to 50
Thermal Diffusivity, mm2/s 64 to 71
36 to 60
Thermal Shock Resistance, points 7.6 to 11
15 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 90.1 to 93.3
93 to 98.4
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0 to 0.25
1.0 to 1.6
Iron (Fe), % 0 to 0.6
0 to 0.3
Lithium (Li), % 0
2.2 to 2.7
Magnesium (Mg), % 0.2 to 0.45
0.6 to 1.3
Manganese (Mn), % 0 to 0.35
0 to 0.1
Silicon (Si), % 6.5 to 7.5
0 to 0.2
Titanium (Ti), % 0 to 0.25
0 to 0.1
Zinc (Zn), % 0 to 0.35
0 to 0.25
Zirconium (Zr), % 0
0.040 to 0.16
Residuals, % 0 to 0.15
0 to 0.15