MakeItFrom.com
Menu (ESC)

356.0 Aluminum vs. AISI 316N Stainless Steel

356.0 aluminum belongs to the aluminum alloys classification, while AISI 316N stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 356.0 aluminum and the bottom bar is AISI 316N stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 55 to 75
190 to 350
Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 2.0 to 3.8
9.0 to 39
Fatigue Strength, MPa 55 to 75
230 to 450
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
78
Shear Strength, MPa 140 to 190
420 to 690
Tensile Strength: Ultimate (UTS), MPa 160 to 240
620 to 1160
Tensile Strength: Yield (Proof), MPa 100 to 190
270 to 870

Thermal Properties

Latent Heat of Fusion, J/g 500
290
Maximum Temperature: Mechanical, °C 170
940
Melting Completion (Liquidus), °C 620
1440
Melting Onset (Solidus), °C 570
1400
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 150 to 170
15
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40 to 43
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 140 to 150
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
19
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 8.0
3.9
Embodied Energy, MJ/kg 150
53
Embodied Water, L/kg 1110
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.2 to 8.2
95 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 70 to 250
180 to 1880
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 17 to 26
22 to 41
Strength to Weight: Bending, points 25 to 33
20 to 31
Thermal Diffusivity, mm2/s 64 to 71
4.1
Thermal Shock Resistance, points 7.6 to 11
14 to 26

Alloy Composition

Aluminum (Al), % 90.1 to 93.3
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.6
61.9 to 71.9
Magnesium (Mg), % 0.2 to 0.45
0
Manganese (Mn), % 0 to 0.35
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
10 to 14
Nitrogen (N), % 0
0.1 to 0.16
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 6.5 to 7.5
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0