MakeItFrom.com
Menu (ESC)

356.0 Aluminum vs. Titanium 4-4-2

356.0 aluminum belongs to the aluminum alloys classification, while titanium 4-4-2 belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is 356.0 aluminum and the bottom bar is titanium 4-4-2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 2.0 to 3.8
10
Fatigue Strength, MPa 55 to 75
590 to 620
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
42
Shear Strength, MPa 140 to 190
690 to 750
Tensile Strength: Ultimate (UTS), MPa 160 to 240
1150 to 1250
Tensile Strength: Yield (Proof), MPa 100 to 190
1030 to 1080

Thermal Properties

Latent Heat of Fusion, J/g 500
410
Maximum Temperature: Mechanical, °C 170
310
Melting Completion (Liquidus), °C 620
1610
Melting Onset (Solidus), °C 570
1560
Specific Heat Capacity, J/kg-K 900
540
Thermal Conductivity, W/m-K 150 to 170
6.7
Thermal Expansion, µm/m-K 21
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
39
Density, g/cm3 2.6
4.7
Embodied Carbon, kg CO2/kg material 8.0
30
Embodied Energy, MJ/kg 150
480
Embodied Water, L/kg 1110
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.2 to 8.2
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 70 to 250
4700 to 5160
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
34
Strength to Weight: Axial, points 17 to 26
68 to 74
Strength to Weight: Bending, points 25 to 33
52 to 55
Thermal Diffusivity, mm2/s 64 to 71
2.6
Thermal Shock Resistance, points 7.6 to 11
86 to 93

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 90.1 to 93.3
3.0 to 5.0
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 0 to 0.25
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.6
0 to 0.2
Magnesium (Mg), % 0.2 to 0.45
0
Manganese (Mn), % 0 to 0.35
0
Molybdenum (Mo), % 0
3.0 to 5.0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.25
Silicon (Si), % 6.5 to 7.5
0.3 to 0.7
Tin (Sn), % 0
1.5 to 2.5
Titanium (Ti), % 0 to 0.25
85.8 to 92.2
Zinc (Zn), % 0 to 0.35
0
Residuals, % 0 to 0.15
0 to 0.4