MakeItFrom.com
Menu (ESC)

356.0 Aluminum vs. C68300 Brass

356.0 aluminum belongs to the aluminum alloys classification, while C68300 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 356.0 aluminum and the bottom bar is C68300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
100
Elongation at Break, % 2.0 to 3.8
15
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 27
40
Shear Strength, MPa 140 to 190
260
Tensile Strength: Ultimate (UTS), MPa 160 to 240
430
Tensile Strength: Yield (Proof), MPa 100 to 190
260

Thermal Properties

Latent Heat of Fusion, J/g 500
180
Maximum Temperature: Mechanical, °C 170
120
Melting Completion (Liquidus), °C 620
900
Melting Onset (Solidus), °C 570
890
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 150 to 170
120
Thermal Expansion, µm/m-K 21
20

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
23
Density, g/cm3 2.6
8.0
Embodied Carbon, kg CO2/kg material 8.0
2.8
Embodied Energy, MJ/kg 150
46
Embodied Water, L/kg 1110
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.2 to 8.2
56
Resilience: Unit (Modulus of Resilience), kJ/m3 70 to 250
330
Stiffness to Weight: Axial, points 15
7.3
Stiffness to Weight: Bending, points 53
20
Strength to Weight: Axial, points 17 to 26
15
Strength to Weight: Bending, points 25 to 33
16
Thermal Diffusivity, mm2/s 64 to 71
38
Thermal Shock Resistance, points 7.6 to 11
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 90.1 to 93.3
0
Antimony (Sb), % 0
0.3 to 1.0
Cadmium (Cd), % 0
0 to 0.010
Copper (Cu), % 0 to 0.25
59 to 63
Iron (Fe), % 0 to 0.6
0
Lead (Pb), % 0
0 to 0.090
Magnesium (Mg), % 0.2 to 0.45
0
Manganese (Mn), % 0 to 0.35
0
Silicon (Si), % 6.5 to 7.5
0.3 to 1.0
Tin (Sn), % 0
0.050 to 0.2
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.35
34.2 to 40.4
Residuals, % 0 to 0.15
0 to 0.5