MakeItFrom.com
Menu (ESC)

356.0-T6 Aluminum vs. 6065-T6 Aluminum

Both 356.0-T6 aluminum and 6065-T6 aluminum are aluminum alloys. Both are furnished in the T6 temper. They have a moderately high 93% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 356.0-T6 aluminum and the bottom bar is 6065-T6 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
68
Elongation at Break, % 3.8
11
Fatigue Strength, MPa 75
110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Shear Strength, MPa 190
190
Tensile Strength: Ultimate (UTS), MPa 240
310
Tensile Strength: Yield (Proof), MPa 170
270

Thermal Properties

Latent Heat of Fusion, J/g 500
400
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 620
640
Melting Onset (Solidus), °C 570
590
Specific Heat Capacity, J/kg-K 900
890
Thermal Conductivity, W/m-K 150
170
Thermal Expansion, µm/m-K 21
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
43
Electrical Conductivity: Equal Weight (Specific), % IACS 140
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.6
2.8
Embodied Carbon, kg CO2/kg material 8.0
8.4
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1110
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.2
34
Resilience: Unit (Modulus of Resilience), kJ/m3 190
540
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
49
Strength to Weight: Axial, points 26
31
Strength to Weight: Bending, points 33
36
Thermal Diffusivity, mm2/s 64
67
Thermal Shock Resistance, points 11
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 90.1 to 93.3
94.4 to 98.2
Bismuth (Bi), % 0
0.5 to 1.5
Chromium (Cr), % 0
0 to 0.15
Copper (Cu), % 0 to 0.25
0.15 to 0.4
Iron (Fe), % 0 to 0.6
0 to 0.7
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0.2 to 0.45
0.8 to 1.2
Manganese (Mn), % 0 to 0.35
0 to 0.15
Silicon (Si), % 6.5 to 7.5
0.4 to 0.8
Titanium (Ti), % 0 to 0.25
0 to 0.1
Zinc (Zn), % 0 to 0.35
0 to 0.25
Zirconium (Zr), % 0
0 to 0.15
Residuals, % 0 to 0.15
0 to 0.15