MakeItFrom.com
Menu (ESC)

358.0 Aluminum vs. AWS E90C-B9

358.0 aluminum belongs to the aluminum alloys classification, while AWS E90C-B9 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 358.0 aluminum and the bottom bar is AWS E90C-B9.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 3.5 to 6.0
18
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
75
Tensile Strength: Ultimate (UTS), MPa 350 to 370
710
Tensile Strength: Yield (Proof), MPa 290 to 320
460

Thermal Properties

Latent Heat of Fusion, J/g 520
270
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 560
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 150
25
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 130
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 19
7.0
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 8.7
2.6
Embodied Energy, MJ/kg 160
37
Embodied Water, L/kg 1090
91

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 20
110
Resilience: Unit (Modulus of Resilience), kJ/m3 590 to 710
550
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 37 to 39
25
Strength to Weight: Bending, points 42 to 44
23
Thermal Diffusivity, mm2/s 63
6.9
Thermal Shock Resistance, points 16 to 17
20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 89.1 to 91.8
0 to 0.040
Beryllium (Be), % 0.1 to 0.3
0
Carbon (C), % 0
0.080 to 0.13
Chromium (Cr), % 0 to 0.2
8.0 to 10.5
Copper (Cu), % 0 to 0.2
0 to 0.2
Iron (Fe), % 0 to 0.3
84.4 to 90.9
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.2
0 to 1.2
Molybdenum (Mo), % 0
0.85 to 1.2
Nickel (Ni), % 0
0 to 0.8
Niobium (Nb), % 0
0.020 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 7.6 to 8.6
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0.1 to 0.2
0
Vanadium (V), % 0
0.15 to 0.3
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0 to 0.5