MakeItFrom.com
Menu (ESC)

4004 Aluminum vs. AWS E630

4004 aluminum belongs to the aluminum alloys classification, while AWS E630 belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4004 aluminum and the bottom bar is AWS E630.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 2.4
8.0
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 110
1040

Thermal Properties

Latent Heat of Fusion, J/g 540
280
Melting Completion (Liquidus), °C 600
1430
Melting Onset (Solidus), °C 560
1380
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 130
17
Thermal Expansion, µm/m-K 22
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
14
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 8.0
2.8
Embodied Energy, MJ/kg 150
40
Embodied Water, L/kg 1070
140

Common Calculations

Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 54
25
Strength to Weight: Axial, points 12
37
Strength to Weight: Bending, points 20
29
Thermal Diffusivity, mm2/s 58
4.5
Thermal Shock Resistance, points 5.1
28

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 86 to 90
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
16 to 16.8
Copper (Cu), % 0 to 0.25
3.3 to 4.0
Iron (Fe), % 0 to 0.8
71.6 to 75.9
Magnesium (Mg), % 1.0 to 2.0
0
Manganese (Mn), % 0 to 0.1
0.25 to 0.75
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0
4.5 to 5.0
Niobium (Nb), % 0
0.15 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 9.0 to 10.5
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0