MakeItFrom.com
Menu (ESC)

4007 Aluminum vs. S44700 Stainless Steel

4007 aluminum belongs to the aluminum alloys classification, while S44700 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4007 aluminum and the bottom bar is S44700 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 32 to 44
200
Elastic (Young's, Tensile) Modulus, GPa 71
210
Elongation at Break, % 5.1 to 23
23
Fatigue Strength, MPa 46 to 88
300
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
82
Shear Strength, MPa 80 to 90
380
Tensile Strength: Ultimate (UTS), MPa 130 to 160
600
Tensile Strength: Yield (Proof), MPa 50 to 120
450

Thermal Properties

Latent Heat of Fusion, J/g 410
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 590
1410
Specific Heat Capacity, J/kg-K 890
480
Thermal Expansion, µm/m-K 23
11

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
18
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 8.1
3.6
Embodied Energy, MJ/kg 150
49
Embodied Water, L/kg 1160
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.4 to 23
120
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 110
480
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 12 to 15
21
Strength to Weight: Bending, points 20 to 23
20
Thermal Shock Resistance, points 5.5 to 6.7
19

Alloy Composition

Aluminum (Al), % 94.1 to 97.6
0
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0.050 to 0.25
28 to 30
Cobalt (Co), % 0 to 0.050
0
Copper (Cu), % 0 to 0.2
0 to 0.15
Iron (Fe), % 0.4 to 1.0
64.9 to 68.5
Magnesium (Mg), % 0 to 0.2
0
Manganese (Mn), % 0.8 to 1.5
0 to 0.3
Molybdenum (Mo), % 0
3.5 to 4.2
Nickel (Ni), % 0.15 to 0.7
0 to 0.15
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 1.0 to 1.7
0 to 0.2
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0