MakeItFrom.com
Menu (ESC)

4032 Aluminum vs. S31100 Stainless Steel

4032 aluminum belongs to the aluminum alloys classification, while S31100 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4032 aluminum and the bottom bar is S31100 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
270
Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 6.7
4.5
Fatigue Strength, MPa 110
330
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 28
79
Shear Strength, MPa 260
580
Tensile Strength: Ultimate (UTS), MPa 390
1000
Tensile Strength: Yield (Proof), MPa 320
710

Thermal Properties

Latent Heat of Fusion, J/g 570
300
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 570
1420
Melting Onset (Solidus), °C 530
1380
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 140
16
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 10
16
Density, g/cm3 2.6
7.7
Embodied Carbon, kg CO2/kg material 7.8
3.1
Embodied Energy, MJ/kg 140
44
Embodied Water, L/kg 1030
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25
40
Resilience: Unit (Modulus of Resilience), kJ/m3 700
1240
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 41
36
Strength to Weight: Bending, points 45
29
Thermal Diffusivity, mm2/s 59
4.2
Thermal Shock Resistance, points 20
28

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 81.1 to 87.2
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0 to 0.1
25 to 27
Copper (Cu), % 0.5 to 1.3
0
Iron (Fe), % 0 to 1.0
63.6 to 69
Magnesium (Mg), % 0.8 to 1.3
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0.5 to 1.3
6.0 to 7.0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 11 to 13.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0