MakeItFrom.com
Menu (ESC)

4115 Aluminum vs. EN 1.4659 Stainless Steel

4115 aluminum belongs to the aluminum alloys classification, while EN 1.4659 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 4115 aluminum and the bottom bar is EN 1.4659 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 38 to 68
260
Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 1.1 to 11
49
Fatigue Strength, MPa 39 to 76
460
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
81
Shear Strength, MPa 71 to 130
640
Tensile Strength: Ultimate (UTS), MPa 120 to 220
900
Tensile Strength: Yield (Proof), MPa 39 to 190
480

Thermal Properties

Latent Heat of Fusion, J/g 420
300
Maximum Temperature: Mechanical, °C 160
1100
Melting Completion (Liquidus), °C 640
1480
Melting Onset (Solidus), °C 590
1430
Specific Heat Capacity, J/kg-K 900
460
Thermal Conductivity, W/m-K 160
12
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 140
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
37
Density, g/cm3 2.7
8.2
Embodied Carbon, kg CO2/kg material 8.1
6.5
Embodied Energy, MJ/kg 150
89
Embodied Water, L/kg 1160
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.1 to 10
370
Resilience: Unit (Modulus of Resilience), kJ/m3 11 to 270
550
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 12 to 23
31
Strength to Weight: Bending, points 20 to 30
25
Thermal Diffusivity, mm2/s 66
3.2
Thermal Shock Resistance, points 5.2 to 9.9
19

Alloy Composition

Aluminum (Al), % 94.6 to 97.4
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
23 to 25
Copper (Cu), % 0.1 to 0.5
1.0 to 2.0
Iron (Fe), % 0 to 0.7
35.7 to 45.7
Magnesium (Mg), % 0.1 to 0.5
0
Manganese (Mn), % 0.6 to 1.2
2.0 to 4.0
Molybdenum (Mo), % 0
5.5 to 6.5
Nickel (Ni), % 0
21 to 23
Nitrogen (N), % 0
0.35 to 0.5
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 1.8 to 2.2
0 to 0.7
Sulfur (S), % 0
0 to 0.010
Tungsten (W), % 0
1.5 to 2.5
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0