MakeItFrom.com
Menu (ESC)

413.0 Aluminum vs. 2011 Aluminum

Both 413.0 aluminum and 2011 aluminum are aluminum alloys. They have 87% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 413.0 aluminum and the bottom bar is 2011 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
71
Elongation at Break, % 2.5
8.5 to 18
Fatigue Strength, MPa 130
74 to 120
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 28
27
Shear Strength, MPa 170
190 to 250
Tensile Strength: Ultimate (UTS), MPa 270
310 to 420
Tensile Strength: Yield (Proof), MPa 140
140 to 310

Thermal Properties

Latent Heat of Fusion, J/g 570
390
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 590
640
Melting Onset (Solidus), °C 580
540
Specific Heat Capacity, J/kg-K 900
870
Thermal Conductivity, W/m-K 140
140 to 170
Thermal Expansion, µm/m-K 20
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
35 to 45
Electrical Conductivity: Equal Weight (Specific), % IACS 120
100 to 130

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.6
3.1
Embodied Carbon, kg CO2/kg material 7.6
7.9
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1040
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.7
29 to 52
Resilience: Unit (Modulus of Resilience), kJ/m3 130
140 to 680
Stiffness to Weight: Axial, points 16
13
Stiffness to Weight: Bending, points 53
44
Strength to Weight: Axial, points 29
27 to 37
Strength to Weight: Bending, points 36
32 to 40
Thermal Diffusivity, mm2/s 59
51 to 64
Thermal Shock Resistance, points 13
14 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 82.2 to 89
91.3 to 94.6
Bismuth (Bi), % 0
0.2 to 0.6
Copper (Cu), % 0 to 1.0
5.0 to 6.0
Iron (Fe), % 0 to 2.0
0 to 0.7
Lead (Pb), % 0
0.2 to 0.6
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.35
0
Nickel (Ni), % 0 to 0.5
0
Silicon (Si), % 11 to 13
0 to 0.4
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.5
0 to 0.3
Residuals, % 0 to 0.25
0 to 0.15