MakeItFrom.com
Menu (ESC)

413.0 Aluminum vs. 7204 Aluminum

Both 413.0 aluminum and 7204 aluminum are aluminum alloys. They have 87% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 413.0 aluminum and the bottom bar is 7204 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
70
Elongation at Break, % 2.5
11 to 13
Fatigue Strength, MPa 130
110 to 130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 28
26
Shear Strength, MPa 170
130 to 220
Tensile Strength: Ultimate (UTS), MPa 270
220 to 380
Tensile Strength: Yield (Proof), MPa 140
120 to 310

Thermal Properties

Latent Heat of Fusion, J/g 570
380
Maximum Temperature: Mechanical, °C 170
210
Melting Completion (Liquidus), °C 590
640
Melting Onset (Solidus), °C 580
520
Specific Heat Capacity, J/kg-K 900
880
Thermal Conductivity, W/m-K 140
150
Thermal Expansion, µm/m-K 20
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
39
Electrical Conductivity: Equal Weight (Specific), % IACS 120
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.9
Embodied Carbon, kg CO2/kg material 7.6
8.4
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1040
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.7
25 to 40
Resilience: Unit (Modulus of Resilience), kJ/m3 130
110 to 710
Stiffness to Weight: Axial, points 16
13
Stiffness to Weight: Bending, points 53
47
Strength to Weight: Axial, points 29
21 to 36
Strength to Weight: Bending, points 36
28 to 40
Thermal Diffusivity, mm2/s 59
58
Thermal Shock Resistance, points 13
9.4 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 82.2 to 89
90.5 to 94.8
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0 to 1.0
0 to 0.2
Iron (Fe), % 0 to 2.0
0 to 0.35
Magnesium (Mg), % 0 to 0.1
1.0 to 2.0
Manganese (Mn), % 0 to 0.35
0.2 to 0.7
Nickel (Ni), % 0 to 0.5
0
Silicon (Si), % 11 to 13
0 to 0.3
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0
0 to 0.2
Vanadium (V), % 0
0 to 0.1
Zinc (Zn), % 0 to 0.5
4.0 to 5.0
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0 to 0.25
0 to 0.15