MakeItFrom.com
Menu (ESC)

413.0 Aluminum vs. ASTM B541 Gold

413.0 aluminum belongs to the aluminum alloys classification, while ASTM B541 gold belongs to the otherwise unclassified metals. There are 22 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 413.0 aluminum and the bottom bar is ASTM B541 gold.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
110
Elongation at Break, % 2.5
6.0 to 14
Poisson's Ratio 0.33
0.4
Shear Modulus, GPa 28
38
Shear Strength, MPa 170
410 to 690
Tensile Strength: Ultimate (UTS), MPa 270
670 to 1180
Tensile Strength: Yield (Proof), MPa 140
480 to 900

Thermal Properties

Latent Heat of Fusion, J/g 570
90
Melting Completion (Liquidus), °C 590
1110
Melting Onset (Solidus), °C 580
930
Specific Heat Capacity, J/kg-K 900
170
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
7.7 to 12
Electrical Conductivity: Equal Weight (Specific), % IACS 120
4.0 to 6.2

Otherwise Unclassified Properties

Density, g/cm3 2.6
17

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.7
65 to 91
Resilience: Unit (Modulus of Resilience), kJ/m3 130
1090 to 3830
Stiffness to Weight: Axial, points 16
3.4
Stiffness to Weight: Bending, points 53
9.0
Strength to Weight: Axial, points 29
11 to 19
Strength to Weight: Bending, points 36
9.8 to 14
Thermal Shock Resistance, points 13
36 to 63

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 82.2 to 89
0
Copper (Cu), % 0 to 1.0
13.5 to 15.5
Gold (Au), % 0
70.5 to 72.5
Iron (Fe), % 0 to 2.0
0
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.35
0
Nickel (Ni), % 0 to 0.5
0
Platinum (Pt), % 0
8.0 to 9.0
Silicon (Si), % 11 to 13
0
Silver (Ag), % 0
4.0 to 5.0
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.5
0.7 to 1.3
Residuals, % 0 to 0.25
0 to 0.4