MakeItFrom.com
Menu (ESC)

413.0 Aluminum vs. Nickel 59

413.0 aluminum belongs to the aluminum alloys classification, while nickel 59 belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 413.0 aluminum and the bottom bar is nickel 59.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
220
Elongation at Break, % 2.5
50
Fatigue Strength, MPa 130
320
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
84
Shear Strength, MPa 170
560
Tensile Strength: Ultimate (UTS), MPa 270
780
Tensile Strength: Yield (Proof), MPa 140
350

Thermal Properties

Latent Heat of Fusion, J/g 570
330
Maximum Temperature: Mechanical, °C 170
990
Melting Completion (Liquidus), °C 590
1500
Melting Onset (Solidus), °C 580
1450
Specific Heat Capacity, J/kg-K 900
430
Thermal Conductivity, W/m-K 140
10
Thermal Expansion, µm/m-K 20
17

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
65
Density, g/cm3 2.6
8.7
Embodied Carbon, kg CO2/kg material 7.6
12
Embodied Energy, MJ/kg 140
160
Embodied Water, L/kg 1040
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.7
320
Resilience: Unit (Modulus of Resilience), kJ/m3 130
280
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 53
23
Strength to Weight: Axial, points 29
25
Strength to Weight: Bending, points 36
22
Thermal Diffusivity, mm2/s 59
2.7
Thermal Shock Resistance, points 13
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 82.2 to 89
0.1 to 0.4
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0
22 to 24
Cobalt (Co), % 0
0 to 0.3
Copper (Cu), % 0 to 1.0
0 to 0.5
Iron (Fe), % 0 to 2.0
0 to 1.5
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.35
0 to 0.5
Molybdenum (Mo), % 0
15 to 16.5
Nickel (Ni), % 0 to 0.5
56.2 to 62.9
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 11 to 13
0 to 0.1
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.25
0