MakeItFrom.com
Menu (ESC)

5026 Aluminum vs. Nickel 30

5026 aluminum belongs to the aluminum alloys classification, while nickel 30 belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5026 aluminum and the bottom bar is nickel 30.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 5.1 to 11
34
Fatigue Strength, MPa 94 to 140
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
82
Shear Strength, MPa 150 to 180
440
Tensile Strength: Ultimate (UTS), MPa 260 to 320
660
Tensile Strength: Yield (Proof), MPa 120 to 250
270

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 210
1020
Melting Completion (Liquidus), °C 650
1480
Melting Onset (Solidus), °C 510
1430
Specific Heat Capacity, J/kg-K 890
450
Thermal Conductivity, W/m-K 130
10
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 99
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.8
8.5
Embodied Carbon, kg CO2/kg material 8.9
9.4
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1150
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15 to 29
180
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 440
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
23
Strength to Weight: Axial, points 26 to 32
22
Strength to Weight: Bending, points 33 to 37
20
Thermal Diffusivity, mm2/s 52
2.7
Thermal Shock Resistance, points 11 to 14
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 88.2 to 94.7
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.3
28 to 31.5
Cobalt (Co), % 0
0 to 5.0
Copper (Cu), % 0.1 to 0.8
1.0 to 2.4
Iron (Fe), % 0.2 to 1.0
13 to 17
Magnesium (Mg), % 3.9 to 4.9
0
Manganese (Mn), % 0.6 to 1.8
0 to 0.030
Molybdenum (Mo), % 0
4.0 to 6.0
Nickel (Ni), % 0
30.2 to 52.2
Niobium (Nb), % 0
0.3 to 1.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.55 to 1.4
0 to 0.8
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0
1.5 to 4.0
Zinc (Zn), % 0 to 1.0
0
Zirconium (Zr), % 0 to 0.3
0
Residuals, % 0 to 0.15
0