MakeItFrom.com
Menu (ESC)

5042 Aluminum vs. 5383 Aluminum

Both 5042 aluminum and 5383 aluminum are aluminum alloys. They have a very high 98% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5042 aluminum and the bottom bar is 5383 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
68
Elongation at Break, % 1.1 to 3.4
6.7 to 15
Fatigue Strength, MPa 97 to 120
130 to 200
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 200
190 to 220
Tensile Strength: Ultimate (UTS), MPa 340 to 360
310 to 370
Tensile Strength: Yield (Proof), MPa 270 to 310
150 to 310

Thermal Properties

Latent Heat of Fusion, J/g 400
390
Maximum Temperature: Mechanical, °C 180
200
Melting Completion (Liquidus), °C 640
650
Melting Onset (Solidus), °C 570
540
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 24
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
29
Electrical Conductivity: Equal Weight (Specific), % IACS 110
97

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.8
9.0
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1180
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.6 to 12
23 to 40
Resilience: Unit (Modulus of Resilience), kJ/m3 550 to 720
170 to 690
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 35 to 37
32 to 38
Strength to Weight: Bending, points 40 to 42
38 to 42
Thermal Diffusivity, mm2/s 53
51
Thermal Shock Resistance, points 15 to 16
14 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94.2 to 96.8
92 to 95.3
Chromium (Cr), % 0 to 0.1
0 to 0.25
Copper (Cu), % 0 to 0.15
0 to 0.2
Iron (Fe), % 0 to 0.35
0 to 0.25
Magnesium (Mg), % 3.0 to 4.0
4.0 to 5.2
Manganese (Mn), % 0.2 to 0.5
0.7 to 1.0
Silicon (Si), % 0 to 0.2
0 to 0.25
Titanium (Ti), % 0 to 0.1
0 to 0.15
Zinc (Zn), % 0 to 0.25
0 to 0.4
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0 to 0.15
0 to 0.15