MakeItFrom.com
Menu (ESC)

5050 Aluminum vs. 2014 Aluminum

Both 5050 aluminum and 2014 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5050 aluminum and the bottom bar is 2014 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
72
Elongation at Break, % 1.7 to 22
1.5 to 16
Fatigue Strength, MPa 45 to 100
90 to 160
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Shear Strength, MPa 91 to 140
130 to 290
Tensile Strength: Ultimate (UTS), MPa 140 to 250
190 to 500
Tensile Strength: Yield (Proof), MPa 50 to 210
100 to 440

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 180
210
Melting Completion (Liquidus), °C 650
630
Melting Onset (Solidus), °C 630
510
Specific Heat Capacity, J/kg-K 900
870
Thermal Conductivity, W/m-K 190
150
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 50
40
Electrical Conductivity: Equal Weight (Specific), % IACS 170
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.7
3.0
Embodied Carbon, kg CO2/kg material 8.4
8.1
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1190
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.1 to 24
6.6 to 56
Resilience: Unit (Modulus of Resilience), kJ/m3 18 to 330
76 to 1330
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
46
Strength to Weight: Axial, points 15 to 26
18 to 46
Strength to Weight: Bending, points 22 to 33
25 to 46
Thermal Diffusivity, mm2/s 79
58
Thermal Shock Resistance, points 6.3 to 11
8.4 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 96.3 to 98.9
90.4 to 95
Chromium (Cr), % 0 to 0.1
0 to 0.1
Copper (Cu), % 0 to 0.2
3.9 to 5.0
Iron (Fe), % 0 to 0.7
0 to 0.7
Magnesium (Mg), % 1.1 to 1.8
0.2 to 0.8
Manganese (Mn), % 0 to 0.1
0.4 to 1.2
Silicon (Si), % 0 to 0.4
0.5 to 1.2
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0 to 0.25
0 to 0.25
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0 to 0.15
0 to 0.15

Comparable Variants