MakeItFrom.com
Menu (ESC)

5050-H34 Aluminum vs. AWS E90C-D2

5050-H34 aluminum belongs to the aluminum alloys classification, while AWS E90C-D2 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5050-H34 aluminum and the bottom bar is AWS E90C-D2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 7.4
19
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Tensile Strength: Ultimate (UTS), MPa 190
690
Tensile Strength: Yield (Proof), MPa 160
620

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 630
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 190
49
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 50
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 170
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.5
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.4
1.6
Embodied Energy, MJ/kg 150
21
Embodied Water, L/kg 1190
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13
130
Resilience: Unit (Modulus of Resilience), kJ/m3 180
1010
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 20
25
Strength to Weight: Bending, points 27
22
Thermal Diffusivity, mm2/s 79
13
Thermal Shock Resistance, points 8.4
20

Alloy Composition

Aluminum (Al), % 96.3 to 98.9
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.2
0 to 0.35
Iron (Fe), % 0 to 0.7
95.5 to 98.6
Magnesium (Mg), % 1.1 to 1.8
0
Manganese (Mn), % 0 to 0.1
1.0 to 1.9
Molybdenum (Mo), % 0
0.4 to 0.6
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.4
0 to 0.9
Sulfur (S), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0
0 to 0.5