MakeItFrom.com
Menu (ESC)

5052-H32 Aluminum vs. Annealed AISI 304

5052-H32 aluminum belongs to the aluminum alloys classification, while annealed AISI 304 belongs to the iron alloys. There are 32 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5052-H32 aluminum and the bottom bar is annealed AISI 304.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60
170
Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 12
43
Fatigue Strength, MPa 120
210
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 140
400
Tensile Strength: Ultimate (UTS), MPa 230
580
Tensile Strength: Yield (Proof), MPa 180
230

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 190
710
Melting Completion (Liquidus), °C 650
1450
Melting Onset (Solidus), °C 610
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 140
16
Thermal Expansion, µm/m-K 24
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
15
Calomel Potential, mV -760
-80
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.6
3.0
Embodied Energy, MJ/kg 150
43
Embodied Water, L/kg 1190
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 26
200
Resilience: Unit (Modulus of Resilience), kJ/m3 240
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 24
21
Strength to Weight: Bending, points 31
20
Thermal Diffusivity, mm2/s 57
4.2
Thermal Shock Resistance, points 10
12

Alloy Composition

Aluminum (Al), % 95.8 to 97.7
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0.15 to 0.35
18 to 20
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.4
66.5 to 74
Magnesium (Mg), % 2.2 to 2.8
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Nickel (Ni), % 0
8.0 to 10.5
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.25
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0