MakeItFrom.com
Menu (ESC)

5070 Aluminum vs. Nickel 30

5070 aluminum belongs to the aluminum alloys classification, while nickel 30 belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5070 aluminum and the bottom bar is nickel 30.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
210
Elongation at Break, % 20
34
Fatigue Strength, MPa 150
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
82
Shear Strength, MPa 190
440
Tensile Strength: Ultimate (UTS), MPa 300
660
Tensile Strength: Yield (Proof), MPa 140
270

Thermal Properties

Latent Heat of Fusion, J/g 390
320
Maximum Temperature: Mechanical, °C 190
1020
Melting Completion (Liquidus), °C 640
1480
Melting Onset (Solidus), °C 550
1430
Specific Heat Capacity, J/kg-K 900
450
Thermal Conductivity, W/m-K 130
10
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 100
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.7
8.5
Embodied Carbon, kg CO2/kg material 8.8
9.4
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1170
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 51
180
Resilience: Unit (Modulus of Resilience), kJ/m3 150
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 31
22
Strength to Weight: Bending, points 37
20
Thermal Diffusivity, mm2/s 53
2.7
Thermal Shock Resistance, points 14
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 92.4 to 95.7
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.3
28 to 31.5
Cobalt (Co), % 0
0 to 5.0
Copper (Cu), % 0 to 0.25
1.0 to 2.4
Iron (Fe), % 0 to 0.4
13 to 17
Magnesium (Mg), % 3.5 to 4.5
0
Manganese (Mn), % 0.4 to 0.8
0 to 0.030
Molybdenum (Mo), % 0
4.0 to 6.0
Nickel (Ni), % 0
30.2 to 52.2
Niobium (Nb), % 0
0.3 to 1.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.25
0 to 0.8
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.15
0
Tungsten (W), % 0
1.5 to 4.0
Zinc (Zn), % 0.4 to 0.8
0
Residuals, % 0 to 0.15
0