MakeItFrom.com
Menu (ESC)

5086 Aluminum vs. EN 1.4931 Steel

5086 aluminum belongs to the aluminum alloys classification, while EN 1.4931 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5086 aluminum and the bottom bar is EN 1.4931 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 65 to 100
240
Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 1.7 to 20
17
Fatigue Strength, MPa 88 to 180
410
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 270 to 390
810
Tensile Strength: Yield (Proof), MPa 110 to 320
620

Thermal Properties

Latent Heat of Fusion, J/g 400
270
Maximum Temperature: Mechanical, °C 190
600
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 590
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
24
Thermal Expansion, µm/m-K 24
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
9.8
Electrical Conductivity: Equal Weight (Specific), % IACS 100
11

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
8.5
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.8
2.9
Embodied Energy, MJ/kg 150
42
Embodied Water, L/kg 1180
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.8 to 42
130
Resilience: Unit (Modulus of Resilience), kJ/m3 86 to 770
970
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 28 to 40
29
Strength to Weight: Bending, points 34 to 44
25
Thermal Diffusivity, mm2/s 52
6.5
Thermal Shock Resistance, points 12 to 17
22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93 to 96.3
0
Carbon (C), % 0
0.2 to 0.26
Chromium (Cr), % 0.050 to 0.25
11.3 to 12.2
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.5
83.2 to 86.8
Magnesium (Mg), % 3.5 to 4.5
0
Manganese (Mn), % 0.2 to 0.7
0.5 to 0.8
Molybdenum (Mo), % 0
1.0 to 1.2
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.4
0 to 0.4
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.15
0
Tungsten (W), % 0
0 to 0.5
Vanadium (V), % 0
0.25 to 0.35
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0