MakeItFrom.com
Menu (ESC)

50Cr-50Ni-Cb Alloy vs. AWS E630

50Cr-50Ni-Cb alloy belongs to the otherwise unclassified metals classification, while AWS E630 belongs to the iron alloys. They have a modest 22% of their average alloy composition in common, which, by itself, doesn't mean much. There are 18 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is 50Cr-50Ni-Cb alloy and the bottom bar is AWS E630.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 5.6
8.0
Poisson's Ratio 0.26
0.28
Shear Modulus, GPa 84
76
Tensile Strength: Ultimate (UTS), MPa 620
1040

Thermal Properties

Latent Heat of Fusion, J/g 350
280
Specific Heat Capacity, J/kg-K 480
470
Thermal Expansion, µm/m-K 15
14

Otherwise Unclassified Properties

Base Metal Price, % relative 60
14
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 9.2
2.8
Embodied Energy, MJ/kg 130
40
Embodied Water, L/kg 350
140

Common Calculations

Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
37
Strength to Weight: Bending, points 20
29
Thermal Shock Resistance, points 14
28

Alloy Composition

Aluminum (Al), % 0 to 0.25
0
Carbon (C), % 0 to 0.1
0 to 0.050
Chromium (Cr), % 47 to 52
16 to 16.8
Copper (Cu), % 0
3.3 to 4.0
Iron (Fe), % 0 to 1.0
71.6 to 75.9
Manganese (Mn), % 0 to 0.3
0.25 to 0.75
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 43.3 to 51.6
4.5 to 5.0
Niobium (Nb), % 1.4 to 1.7
0.15 to 0.3
Nitrogen (N), % 0 to 0.16
0
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 0.75
Sulfur (S), % 0 to 0.020
0 to 0.030
Titanium (Ti), % 0 to 0.5
0