MakeItFrom.com
Menu (ESC)

5182 Aluminum vs. Grade 21 Titanium

5182 aluminum belongs to the aluminum alloys classification, while grade 21 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 5182 aluminum and the bottom bar is grade 21 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
140
Elongation at Break, % 1.1 to 12
9.0 to 17
Fatigue Strength, MPa 100 to 130
550 to 660
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 25
51
Shear Strength, MPa 170 to 240
550 to 790
Tensile Strength: Ultimate (UTS), MPa 280 to 420
890 to 1340
Tensile Strength: Yield (Proof), MPa 130 to 360
870 to 1170

Thermal Properties

Latent Heat of Fusion, J/g 390
410
Maximum Temperature: Mechanical, °C 180
310
Melting Completion (Liquidus), °C 640
1740
Melting Onset (Solidus), °C 590
1690
Specific Heat Capacity, J/kg-K 900
500
Thermal Conductivity, W/m-K 130
7.5
Thermal Expansion, µm/m-K 24
7.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.7
5.4
Embodied Carbon, kg CO2/kg material 8.9
32
Embodied Energy, MJ/kg 150
490
Embodied Water, L/kg 1180
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6 to 49
110 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 950
2760 to 5010
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
32
Strength to Weight: Axial, points 29 to 44
46 to 69
Strength to Weight: Bending, points 36 to 47
38 to 50
Thermal Diffusivity, mm2/s 53
2.8
Thermal Shock Resistance, points 12 to 19
66 to 100

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.2 to 95.8
2.5 to 3.5
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.15
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.35
0 to 0.4
Magnesium (Mg), % 4.0 to 5.0
0
Manganese (Mn), % 0.2 to 0.5
0
Molybdenum (Mo), % 0
14 to 16
Niobium (Nb), % 0
2.2 to 3.2
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.17
Silicon (Si), % 0 to 0.2
0.15 to 0.25
Titanium (Ti), % 0 to 0.1
76 to 81.2
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0 to 0.4

Comparable Variants