MakeItFrom.com
Menu (ESC)

535.0 Aluminum vs. C92500 Bronze

535.0 aluminum belongs to the aluminum alloys classification, while C92500 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 535.0 aluminum and the bottom bar is C92500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
110
Elongation at Break, % 10
11
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 25
40
Tensile Strength: Ultimate (UTS), MPa 270
310
Tensile Strength: Yield (Proof), MPa 140
190

Thermal Properties

Latent Heat of Fusion, J/g 390
190
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 630
980
Melting Onset (Solidus), °C 570
870
Specific Heat Capacity, J/kg-K 910
370
Thermal Conductivity, W/m-K 100
63
Thermal Expansion, µm/m-K 24
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
12
Electrical Conductivity: Equal Weight (Specific), % IACS 79
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
35
Density, g/cm3 2.6
8.7
Embodied Carbon, kg CO2/kg material 9.4
3.7
Embodied Energy, MJ/kg 160
61
Embodied Water, L/kg 1180
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24
30
Resilience: Unit (Modulus of Resilience), kJ/m3 150
170
Stiffness to Weight: Axial, points 14
6.8
Stiffness to Weight: Bending, points 51
18
Strength to Weight: Axial, points 28
9.8
Strength to Weight: Bending, points 35
12
Thermal Diffusivity, mm2/s 42
20
Thermal Shock Resistance, points 12
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.5 to 93.6
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Beryllium (Be), % 0.0030 to 0.0070
0
Boron (B), % 0 to 0.0050
0
Copper (Cu), % 0 to 0.050
85 to 88
Iron (Fe), % 0 to 0.15
0 to 0.3
Lead (Pb), % 0
1.0 to 1.5
Magnesium (Mg), % 6.2 to 7.5
0
Manganese (Mn), % 0.1 to 0.25
0
Nickel (Ni), % 0
0.8 to 1.5
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0 to 0.15
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
10 to 12
Titanium (Ti), % 0.1 to 0.25
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0 to 0.15
0 to 0.7