MakeItFrom.com
Menu (ESC)

5383 Aluminum vs. EN AC-46100 Aluminum

Both 5383 aluminum and EN AC-46100 aluminum are aluminum alloys. They have 86% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5383 aluminum and the bottom bar is EN AC-46100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85 to 110
91
Elastic (Young's, Tensile) Modulus, GPa 68
73
Elongation at Break, % 6.7 to 15
1.0
Fatigue Strength, MPa 130 to 200
110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
28
Tensile Strength: Ultimate (UTS), MPa 310 to 370
270
Tensile Strength: Yield (Proof), MPa 150 to 310
160

Thermal Properties

Latent Heat of Fusion, J/g 390
550
Maximum Temperature: Mechanical, °C 200
180
Melting Completion (Liquidus), °C 650
600
Melting Onset (Solidus), °C 540
540
Specific Heat Capacity, J/kg-K 900
890
Thermal Conductivity, W/m-K 130
110
Thermal Expansion, µm/m-K 24
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
28
Electrical Conductivity: Equal Weight (Specific), % IACS 97
90

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 9.0
7.6
Embodied Energy, MJ/kg 160
140
Embodied Water, L/kg 1170
1030

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23 to 40
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 690
170
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
51
Strength to Weight: Axial, points 32 to 38
27
Strength to Weight: Bending, points 38 to 42
34
Thermal Diffusivity, mm2/s 51
44
Thermal Shock Resistance, points 14 to 16
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 92 to 95.3
80.4 to 88.5
Chromium (Cr), % 0 to 0.25
0 to 0.15
Copper (Cu), % 0 to 0.2
1.5 to 2.5
Iron (Fe), % 0 to 0.25
0 to 1.1
Lead (Pb), % 0
0 to 0.25
Magnesium (Mg), % 4.0 to 5.2
0 to 0.3
Manganese (Mn), % 0.7 to 1.0
0 to 0.55
Nickel (Ni), % 0
0 to 0.45
Silicon (Si), % 0 to 0.25
10 to 12
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.15
0 to 0.25
Zinc (Zn), % 0 to 0.4
0 to 1.7
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0 to 0.25