MakeItFrom.com
Menu (ESC)

5383 Aluminum vs. C42600 Brass

5383 aluminum belongs to the aluminum alloys classification, while C42600 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5383 aluminum and the bottom bar is C42600 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
110
Elongation at Break, % 6.7 to 15
1.1 to 40
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
42
Shear Strength, MPa 190 to 220
280 to 470
Tensile Strength: Ultimate (UTS), MPa 310 to 370
410 to 830
Tensile Strength: Yield (Proof), MPa 150 to 310
220 to 810

Thermal Properties

Latent Heat of Fusion, J/g 390
200
Maximum Temperature: Mechanical, °C 200
180
Melting Completion (Liquidus), °C 650
1030
Melting Onset (Solidus), °C 540
1010
Specific Heat Capacity, J/kg-K 900
380
Thermal Conductivity, W/m-K 130
110
Thermal Expansion, µm/m-K 24
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
25
Electrical Conductivity: Equal Weight (Specific), % IACS 97
26

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
31
Density, g/cm3 2.7
8.7
Embodied Carbon, kg CO2/kg material 9.0
2.9
Embodied Energy, MJ/kg 160
48
Embodied Water, L/kg 1170
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23 to 40
9.4 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 690
230 to 2970
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 50
18
Strength to Weight: Axial, points 32 to 38
13 to 27
Strength to Weight: Bending, points 38 to 42
14 to 23
Thermal Diffusivity, mm2/s 51
33
Thermal Shock Resistance, points 14 to 16
15 to 29

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 92 to 95.3
0
Chromium (Cr), % 0 to 0.25
0
Copper (Cu), % 0 to 0.2
87 to 90
Iron (Fe), % 0 to 0.25
0.050 to 0.2
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 4.0 to 5.2
0
Manganese (Mn), % 0.7 to 1.0
0
Nickel (Ni), % 0
0.050 to 0.2
Phosphorus (P), % 0
0.020 to 0.050
Silicon (Si), % 0 to 0.25
0
Tin (Sn), % 0
2.5 to 4.0
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.4
5.3 to 10.4
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0 to 0.2