MakeItFrom.com
Menu (ESC)

5383-O Aluminum vs. EN 1.7366 +A Steel

5383-O aluminum belongs to the aluminum alloys classification, while EN 1.7366 +A steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5383-O aluminum and the bottom bar is EN 1.7366 +A steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
140
Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 15
19
Fatigue Strength, MPa 160
160
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
74
Shear Strength, MPa 190
290
Tensile Strength: Ultimate (UTS), MPa 310
460
Tensile Strength: Yield (Proof), MPa 150
230

Thermal Properties

Latent Heat of Fusion, J/g 390
260
Maximum Temperature: Mechanical, °C 200
510
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 540
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
40
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
8.1
Electrical Conductivity: Equal Weight (Specific), % IACS 97
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
4.3
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 9.0
1.7
Embodied Energy, MJ/kg 160
23
Embodied Water, L/kg 1170
69

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40
74
Resilience: Unit (Modulus of Resilience), kJ/m3 170
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 32
16
Strength to Weight: Bending, points 38
17
Thermal Diffusivity, mm2/s 51
11
Thermal Shock Resistance, points 14
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 92 to 95.3
0
Carbon (C), % 0
0 to 0.18
Chromium (Cr), % 0 to 0.25
4.0 to 6.0
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.25
91.9 to 95.3
Magnesium (Mg), % 4.0 to 5.2
0
Manganese (Mn), % 0.7 to 1.0
0.3 to 0.8
Molybdenum (Mo), % 0
0.45 to 0.65
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.25
0 to 0.4
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.4
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0