MakeItFrom.com
Menu (ESC)

5383-O Aluminum vs. Annealed SAE-AISI M62

5383-O aluminum belongs to the aluminum alloys classification, while annealed SAE-AISI M62 belongs to the iron alloys. There are 20 material properties with values for both materials. Properties with values for just one material (13, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5383-O aluminum and the bottom bar is annealed SAE-AISI M62.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
250
Elastic (Young's, Tensile) Modulus, GPa 68
200
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
79
Tensile Strength: Ultimate (UTS), MPa 310
830

Thermal Properties

Latent Heat of Fusion, J/g 390
260
Melting Completion (Liquidus), °C 650
1650
Melting Onset (Solidus), °C 540
1600
Specific Heat Capacity, J/kg-K 900
430
Thermal Expansion, µm/m-K 24
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
30
Density, g/cm3 2.7
8.5
Embodied Carbon, kg CO2/kg material 9.0
10
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 1170
110

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 32
27
Strength to Weight: Bending, points 38
23
Thermal Shock Resistance, points 14
24

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 92 to 95.3
0
Carbon (C), % 0
1.3 to 1.4
Chromium (Cr), % 0 to 0.25
3.5 to 4.0
Copper (Cu), % 0 to 0.2
0 to 0.25
Iron (Fe), % 0 to 0.25
73.6 to 77.4
Magnesium (Mg), % 4.0 to 5.2
0
Manganese (Mn), % 0.7 to 1.0
0.15 to 0.4
Molybdenum (Mo), % 0
10 to 11
Nickel (Ni), % 0
0 to 0.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.25
0.15 to 0.4
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0
Tungsten (W), % 0
5.8 to 6.5
Vanadium (V), % 0
1.8 to 2.1
Zinc (Zn), % 0 to 0.4
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0