MakeItFrom.com
Menu (ESC)

5456 Aluminum vs. EN AC-46500 Aluminum

Both 5456 aluminum and EN AC-46500 aluminum are aluminum alloys. They have 85% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 5456 aluminum and the bottom bar is EN AC-46500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
74
Elongation at Break, % 11 to 18
1.0
Fatigue Strength, MPa 130 to 210
110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
28
Tensile Strength: Ultimate (UTS), MPa 320 to 340
270
Tensile Strength: Yield (Proof), MPa 150 to 250
160

Thermal Properties

Latent Heat of Fusion, J/g 390
520
Maximum Temperature: Mechanical, °C 190
180
Melting Completion (Liquidus), °C 640
610
Melting Onset (Solidus), °C 570
520
Specific Heat Capacity, J/kg-K 900
880
Thermal Conductivity, W/m-K 120
100
Thermal Expansion, µm/m-K 24
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
26
Electrical Conductivity: Equal Weight (Specific), % IACS 97
81

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.7
2.9
Embodied Carbon, kg CO2/kg material 9.0
7.6
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1170
1030

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33 to 46
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 470
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
49
Strength to Weight: Axial, points 33 to 35
26
Strength to Weight: Bending, points 38 to 40
32
Thermal Diffusivity, mm2/s 48
41
Thermal Shock Resistance, points 14 to 15
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 92 to 94.8
77.9 to 90
Chromium (Cr), % 0.050 to 0.2
0 to 0.15
Copper (Cu), % 0 to 0.1
2.0 to 4.0
Iron (Fe), % 0 to 0.4
0 to 1.3
Lead (Pb), % 0
0 to 0.35
Magnesium (Mg), % 4.7 to 5.5
0.050 to 0.55
Manganese (Mn), % 0.5 to 1.0
0 to 0.55
Nickel (Ni), % 0
0 to 0.55
Silicon (Si), % 0 to 0.25
8.0 to 11
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.2
0 to 0.25
Zinc (Zn), % 0 to 0.25
0 to 3.0
Residuals, % 0 to 0.15
0 to 0.25