MakeItFrom.com
Menu (ESC)

5657 Aluminum vs. S24000 Stainless Steel

5657 aluminum belongs to the aluminum alloys classification, while S24000 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5657 aluminum and the bottom bar is S24000 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 40 to 50
210
Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 6.6 to 15
39
Fatigue Strength, MPa 74 to 88
370
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 92 to 110
530
Tensile Strength: Ultimate (UTS), MPa 150 to 200
770
Tensile Strength: Yield (Proof), MPa 140 to 170
430

Thermal Properties

Latent Heat of Fusion, J/g 400
280
Maximum Temperature: Mechanical, °C 180
910
Melting Completion (Liquidus), °C 660
1390
Melting Onset (Solidus), °C 640
1350
Specific Heat Capacity, J/kg-K 900
480
Thermal Expansion, µm/m-K 24
17

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.7
7.6
Embodied Carbon, kg CO2/kg material 8.4
2.7
Embodied Energy, MJ/kg 160
39
Embodied Water, L/kg 1200
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.7 to 27
260
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 200
470
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 15 to 20
28
Strength to Weight: Bending, points 23 to 28
24
Thermal Shock Resistance, points 6.7 to 8.6
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 98.5 to 99.4
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 0 to 0.1
0
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.1
61.5 to 69
Magnesium (Mg), % 0.6 to 1.0
0
Manganese (Mn), % 0 to 0.030
11.5 to 14.5
Nickel (Ni), % 0
2.3 to 3.7
Nitrogen (N), % 0
0.2 to 0.4
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0 to 0.080
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.050
0