MakeItFrom.com
Menu (ESC)

6012 Aluminum vs. 1050 Aluminum

Both 6012 aluminum and 1050 aluminum are aluminum alloys. They have a very high 96% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 6012 aluminum and the bottom bar is 1050 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
68
Elongation at Break, % 9.1 to 11
4.6 to 37
Fatigue Strength, MPa 55 to 100
31 to 57
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 130 to 190
52 to 81
Tensile Strength: Ultimate (UTS), MPa 220 to 320
76 to 140
Tensile Strength: Yield (Proof), MPa 110 to 260
25 to 120

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 570
650
Specific Heat Capacity, J/kg-K 890
900
Thermal Conductivity, W/m-K 160
230
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
61
Electrical Conductivity: Equal Weight (Specific), % IACS 140
200

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.9
2.7
Embodied Carbon, kg CO2/kg material 8.2
8.3
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1170
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 28
5.4 to 22
Resilience: Unit (Modulus of Resilience), kJ/m3 94 to 480
4.6 to 110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 48
50
Strength to Weight: Axial, points 22 to 32
7.8 to 14
Strength to Weight: Bending, points 29 to 37
15 to 22
Thermal Diffusivity, mm2/s 62
94
Thermal Shock Resistance, points 10 to 14
3.4 to 6.2

Alloy Composition

Aluminum (Al), % 92.2 to 98
99.5 to 100
Bismuth (Bi), % 0 to 0.7
0
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.1
0 to 0.050
Iron (Fe), % 0 to 0.5
0 to 0.4
Lead (Pb), % 0.4 to 2.0
0
Magnesium (Mg), % 0.6 to 1.2
0 to 0.050
Manganese (Mn), % 0.4 to 1.0
0 to 0.050
Silicon (Si), % 0.6 to 1.4
0 to 0.25
Titanium (Ti), % 0 to 0.2
0 to 0.030
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.3
0 to 0.050
Residuals, % 0 to 0.15
0