MakeItFrom.com
Menu (ESC)

6013 Aluminum vs. AISI 416 Stainless Steel

6013 aluminum belongs to the aluminum alloys classification, while AISI 416 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6013 aluminum and the bottom bar is AISI 416 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 3.4 to 22
13 to 31
Fatigue Strength, MPa 98 to 140
230 to 340
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 190 to 240
340 to 480
Tensile Strength: Ultimate (UTS), MPa 310 to 410
510 to 800
Tensile Strength: Yield (Proof), MPa 170 to 350
290 to 600

Thermal Properties

Latent Heat of Fusion, J/g 410
270
Maximum Temperature: Mechanical, °C 160
680
Melting Completion (Liquidus), °C 650
1530
Melting Onset (Solidus), °C 580
1480
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 150
30
Thermal Expansion, µm/m-K 23
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 120
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
7.0
Density, g/cm3 2.8
7.7
Embodied Carbon, kg CO2/kg material 8.3
1.9
Embodied Energy, MJ/kg 150
27
Embodied Water, L/kg 1170
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 58
98 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 200 to 900
220 to 940
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 31 to 41
18 to 29
Strength to Weight: Bending, points 37 to 44
18 to 25
Thermal Diffusivity, mm2/s 60
8.1
Thermal Shock Resistance, points 14 to 18
19 to 30

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94.8 to 97.8
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.1
12 to 14
Copper (Cu), % 0.6 to 1.1
0
Iron (Fe), % 0 to 0.5
83.2 to 87.9
Magnesium (Mg), % 0.8 to 1.2
0
Manganese (Mn), % 0.2 to 0.8
0 to 1.3
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0.6 to 1.0
0 to 1.0
Sulfur (S), % 0
0.15 to 0.35
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0