MakeItFrom.com
Menu (ESC)

6016 Aluminum vs. EN AC-21000 Aluminum

Both 6016 aluminum and EN AC-21000 aluminum are aluminum alloys. They have a very high 95% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 6016 aluminum and the bottom bar is EN AC-21000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 55 to 80
100
Elastic (Young's, Tensile) Modulus, GPa 69
71
Elongation at Break, % 11 to 27
6.7
Fatigue Strength, MPa 68 to 89
100
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 200 to 280
340
Tensile Strength: Yield (Proof), MPa 110 to 210
240

Thermal Properties

Latent Heat of Fusion, J/g 410
390
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 660
670
Melting Onset (Solidus), °C 610
550
Specific Heat Capacity, J/kg-K 900
880
Thermal Conductivity, W/m-K 190 to 210
130
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 48 to 54
34
Electrical Conductivity: Equal Weight (Specific), % IACS 160 to 180
100

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.7
3.0
Embodied Carbon, kg CO2/kg material 8.2
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29 to 47
21
Resilience: Unit (Modulus of Resilience), kJ/m3 82 to 340
390
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
46
Strength to Weight: Axial, points 21 to 29
32
Strength to Weight: Bending, points 29 to 35
36
Thermal Diffusivity, mm2/s 77 to 86
49
Thermal Shock Resistance, points 9.1 to 12
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 96.4 to 98.8
93.4 to 95.5
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.2
4.2 to 5.0
Iron (Fe), % 0 to 0.5
0 to 0.35
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0.25 to 0.6
0.15 to 0.35
Manganese (Mn), % 0 to 0.2
0 to 0.1
Nickel (Ni), % 0
0 to 0.050
Silicon (Si), % 1.0 to 1.5
0 to 0.2
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.15
0.15 to 0.3
Zinc (Zn), % 0 to 0.2
0 to 0.1
Residuals, % 0 to 0.15
0 to 0.1