MakeItFrom.com
Menu (ESC)

6018 Aluminum vs. S33228 Stainless Steel

6018 aluminum belongs to the aluminum alloys classification, while S33228 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6018 aluminum and the bottom bar is S33228 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 9.0 to 9.1
34
Fatigue Strength, MPa 85 to 89
170
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
79
Shear Strength, MPa 170 to 180
380
Tensile Strength: Ultimate (UTS), MPa 290 to 300
570
Tensile Strength: Yield (Proof), MPa 220 to 230
210

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 160
1100
Melting Completion (Liquidus), °C 640
1410
Melting Onset (Solidus), °C 570
1360
Specific Heat Capacity, J/kg-K 890
470
Thermal Expansion, µm/m-K 23
16

Otherwise Unclassified Properties

Base Metal Price, % relative 10
37
Density, g/cm3 2.9
8.0
Embodied Carbon, kg CO2/kg material 8.2
6.2
Embodied Energy, MJ/kg 150
89
Embodied Water, L/kg 1180
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 25
150
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 380
110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 48
24
Strength to Weight: Axial, points 28 to 29
20
Strength to Weight: Bending, points 34 to 35
19
Thermal Shock Resistance, points 13
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.1 to 97.8
0 to 0.025
Bismuth (Bi), % 0.4 to 0.7
0
Carbon (C), % 0
0.040 to 0.080
Cerium (Ce), % 0
0.050 to 0.1
Chromium (Cr), % 0 to 0.1
26 to 28
Copper (Cu), % 0.15 to 0.4
0
Iron (Fe), % 0 to 0.7
36.5 to 42.3
Lead (Pb), % 0.4 to 1.2
0
Magnesium (Mg), % 0.6 to 1.2
0
Manganese (Mn), % 0.3 to 0.8
0 to 1.0
Nickel (Ni), % 0
31 to 33
Niobium (Nb), % 0
0.6 to 1.0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0.5 to 1.2
0 to 0.3
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0