MakeItFrom.com
Menu (ESC)

6070 Aluminum vs. AISI 416 Stainless Steel

6070 aluminum belongs to the aluminum alloys classification, while AISI 416 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6070 aluminum and the bottom bar is AISI 416 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 5.6 to 8.6
13 to 31
Fatigue Strength, MPa 95 to 130
230 to 340
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 220 to 240
340 to 480
Tensile Strength: Ultimate (UTS), MPa 370 to 380
510 to 800
Tensile Strength: Yield (Proof), MPa 350
290 to 600

Thermal Properties

Latent Heat of Fusion, J/g 410
270
Maximum Temperature: Mechanical, °C 160
680
Melting Completion (Liquidus), °C 650
1530
Melting Onset (Solidus), °C 570
1480
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 160
30
Thermal Expansion, µm/m-K 23
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 140
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
7.0
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.3
1.9
Embodied Energy, MJ/kg 150
27
Embodied Water, L/kg 1170
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 32
98 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 880 to 900
220 to 940
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 38
18 to 29
Strength to Weight: Bending, points 42 to 43
18 to 25
Thermal Diffusivity, mm2/s 65
8.1
Thermal Shock Resistance, points 16 to 17
19 to 30

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94.6 to 98
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.1
12 to 14
Copper (Cu), % 0.15 to 0.4
0
Iron (Fe), % 0 to 0.5
83.2 to 87.9
Magnesium (Mg), % 0.5 to 1.2
0
Manganese (Mn), % 0.4 to 1.0
0 to 1.3
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 1.0 to 1.7
0 to 1.0
Sulfur (S), % 0
0.15 to 0.35
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0