MakeItFrom.com
Menu (ESC)

7010 Aluminum vs. EN 1.4525 Stainless Steel

7010 aluminum belongs to the aluminum alloys classification, while EN 1.4525 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7010 aluminum and the bottom bar is EN 1.4525 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 3.9 to 6.8
5.6 to 13
Fatigue Strength, MPa 160 to 190
480 to 540
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 520 to 590
1030 to 1250
Tensile Strength: Yield (Proof), MPa 410 to 540
840 to 1120

Thermal Properties

Latent Heat of Fusion, J/g 380
280
Maximum Temperature: Mechanical, °C 200
860
Melting Completion (Liquidus), °C 630
1430
Melting Onset (Solidus), °C 480
1390
Specific Heat Capacity, J/kg-K 860
480
Thermal Conductivity, W/m-K 150
18
Thermal Expansion, µm/m-K 24
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
13
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.3
2.8
Embodied Energy, MJ/kg 150
39
Embodied Water, L/kg 1120
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22 to 33
68 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 1230 to 2130
1820 to 3230
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 47 to 54
36 to 45
Strength to Weight: Bending, points 47 to 52
29 to 33
Thermal Diffusivity, mm2/s 58
4.7
Thermal Shock Resistance, points 22 to 26
34 to 41

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 87.9 to 90.6
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0 to 0.050
15 to 17
Copper (Cu), % 1.5 to 2.0
2.5 to 4.0
Iron (Fe), % 0 to 0.15
70.4 to 79
Magnesium (Mg), % 2.1 to 2.6
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.8
Nickel (Ni), % 0 to 0.050
3.5 to 5.5
Niobium (Nb), % 0
0 to 0.35
Nitrogen (N), % 0
0 to 0.050
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.12
0 to 0.8
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.060
0
Zinc (Zn), % 5.7 to 6.7
0
Zirconium (Zr), % 0.1 to 0.16
0
Residuals, % 0 to 0.15
0

Comparable Variants