MakeItFrom.com
Menu (ESC)

7129 Aluminum vs. Grade 23 Titanium

7129 Aluminum belongs to the aluminum alloys classification, while grade 23 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 7129 Aluminum and the bottom bar is grade 23 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
110
Elongation at Break, % 9.0 to 9.1
6.7 to 11
Fatigue Strength, MPa 150 to 190
470 to 500
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
40
Shear Strength, MPa 250 to 260
540 to 570
Tensile Strength: Ultimate (UTS), MPa 430
930 to 940
Tensile Strength: Yield (Proof), MPa 380 to 390
850 to 870

Thermal Properties

Latent Heat of Fusion, J/g 380
410
Maximum Temperature: Mechanical, °C 180
340
Melting Completion (Liquidus), °C 630
1610
Melting Onset (Solidus), °C 510
1560
Specific Heat Capacity, J/kg-K 880
560
Thermal Conductivity, W/m-K 150
7.1
Thermal Expansion, µm/m-K 24
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
36
Density, g/cm3 2.9
4.4
Embodied Carbon, kg CO2/kg material 8.3
38
Embodied Energy, MJ/kg 150
610
Embodied Water, L/kg 1150
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37 to 38
61 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 1050 to 1090
3430 to 3560
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
35
Strength to Weight: Axial, points 41
58 to 59
Strength to Weight: Bending, points 43 to 44
48
Thermal Diffusivity, mm2/s 58
2.9
Thermal Shock Resistance, points 19
67 to 68

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91 to 94
5.5 to 6.5
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0.5 to 0.9
0
Gallium (Ga), % 0 to 0.030
0
Hydrogen (H), % 0
0 to 0.013
Iron (Fe), % 0 to 0.3
0 to 0.25
Magnesium (Mg), % 1.3 to 2.0
0
Manganese (Mn), % 0 to 0.1
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.13
Silicon (Si), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.050
88.1 to 91
Vanadium (V), % 0 to 0.050
3.5 to 4.5
Zinc (Zn), % 4.2 to 5.2
0
Residuals, % 0 to 0.15
0 to 0.4