MakeItFrom.com
Menu (ESC)

8090 Aluminum vs. S44537 Stainless Steel

8090 aluminum belongs to the aluminum alloys classification, while S44537 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 8090 aluminum and the bottom bar is S44537 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
200
Elongation at Break, % 3.5 to 13
21
Fatigue Strength, MPa 91 to 140
230
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 25
79
Tensile Strength: Ultimate (UTS), MPa 340 to 490
510
Tensile Strength: Yield (Proof), MPa 210 to 420
360

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 190
1000
Melting Completion (Liquidus), °C 660
1480
Melting Onset (Solidus), °C 600
1430
Specific Heat Capacity, J/kg-K 960
470
Thermal Conductivity, W/m-K 95 to 160
21
Thermal Expansion, µm/m-K 24
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 66
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 18
19
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.6
3.4
Embodied Energy, MJ/kg 170
50
Embodied Water, L/kg 1160
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 41
95
Resilience: Unit (Modulus of Resilience), kJ/m3 340 to 1330
320
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 34 to 49
18
Strength to Weight: Bending, points 39 to 50
18
Thermal Diffusivity, mm2/s 36 to 60
5.6
Thermal Shock Resistance, points 15 to 22
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93 to 98.4
0 to 0.1
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.1
20 to 24
Copper (Cu), % 1.0 to 1.6
0 to 0.5
Iron (Fe), % 0 to 0.3
69 to 78.6
Lanthanum (La), % 0
0.040 to 0.2
Lithium (Li), % 2.2 to 2.7
0
Magnesium (Mg), % 0.6 to 1.3
0
Manganese (Mn), % 0 to 0.1
0 to 0.8
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0 to 0.2
0.1 to 0.6
Sulfur (S), % 0
0 to 0.0060
Titanium (Ti), % 0 to 0.1
0.020 to 0.2
Tungsten (W), % 0
1.0 to 3.0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.040 to 0.16
0
Residuals, % 0 to 0.15
0