MakeItFrom.com
Menu (ESC)

852.0 Aluminum vs. EN 1.4123 Stainless Steel

852.0 aluminum belongs to the aluminum alloys classification, while EN 1.4123 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 852.0 aluminum and the bottom bar is EN 1.4123 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 64
220 to 250
Elastic (Young's, Tensile) Modulus, GPa 70
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Tensile Strength: Ultimate (UTS), MPa 200
720 to 810

Thermal Properties

Latent Heat of Fusion, J/g 370
280
Maximum Temperature: Mechanical, °C 190
840
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 210
1410
Specific Heat Capacity, J/kg-K 840
480
Thermal Conductivity, W/m-K 180
23
Thermal Expansion, µm/m-K 23
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 15
10
Density, g/cm3 3.2
7.7
Embodied Carbon, kg CO2/kg material 8.5
4.2
Embodied Energy, MJ/kg 160
62
Embodied Water, L/kg 1150
120

Common Calculations

Stiffness to Weight: Axial, points 12
14
Stiffness to Weight: Bending, points 43
25
Strength to Weight: Axial, points 17
26 to 29
Strength to Weight: Bending, points 24
23 to 25
Thermal Diffusivity, mm2/s 65
6.3
Thermal Shock Resistance, points 8.7
26 to 29

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 86.6 to 91.3
0
Carbon (C), % 0
0.35 to 0.5
Chromium (Cr), % 0
14 to 16.5
Copper (Cu), % 1.7 to 2.3
0
Iron (Fe), % 0 to 0.7
76.7 to 84.6
Magnesium (Mg), % 0.6 to 0.9
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
1.0 to 2.5
Nickel (Ni), % 0.9 to 1.5
0 to 0.5
Nitrogen (N), % 0
0.1 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 5.5 to 7.0
0
Titanium (Ti), % 0 to 0.2
0
Vanadium (V), % 0
0 to 1.5
Residuals, % 0 to 0.3
0