MakeItFrom.com
Menu (ESC)

852.0 Aluminum vs. N06975 Nickel

852.0 aluminum belongs to the aluminum alloys classification, while N06975 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 852.0 aluminum and the bottom bar is N06975 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 3.4
45
Fatigue Strength, MPa 73
210
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
80
Shear Strength, MPa 130
470
Tensile Strength: Ultimate (UTS), MPa 200
660
Tensile Strength: Yield (Proof), MPa 150
250

Thermal Properties

Latent Heat of Fusion, J/g 370
320
Maximum Temperature: Mechanical, °C 190
1000
Melting Completion (Liquidus), °C 640
1430
Melting Onset (Solidus), °C 210
1380
Specific Heat Capacity, J/kg-K 840
460
Thermal Expansion, µm/m-K 23
13

Otherwise Unclassified Properties

Base Metal Price, % relative 15
50
Density, g/cm3 3.2
8.3
Embodied Carbon, kg CO2/kg material 8.5
8.9
Embodied Energy, MJ/kg 160
120
Embodied Water, L/kg 1150
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.2
240
Resilience: Unit (Modulus of Resilience), kJ/m3 160
150
Stiffness to Weight: Axial, points 12
14
Stiffness to Weight: Bending, points 43
24
Strength to Weight: Axial, points 17
22
Strength to Weight: Bending, points 24
20
Thermal Shock Resistance, points 8.7
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 86.6 to 91.3
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
23 to 26
Copper (Cu), % 1.7 to 2.3
0.7 to 1.2
Iron (Fe), % 0 to 0.7
10.2 to 23.6
Magnesium (Mg), % 0.6 to 0.9
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
5.0 to 7.0
Nickel (Ni), % 0.9 to 1.5
47 to 52
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 5.5 to 7.0
0
Titanium (Ti), % 0 to 0.2
0.7 to 1.5
Residuals, % 0 to 0.3
0