MakeItFrom.com
Menu (ESC)

ACI-ASTM CA15M Steel vs. C92900 Bronze

ACI-ASTM CA15M steel belongs to the iron alloys classification, while C92900 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CA15M steel and the bottom bar is C92900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
84
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 20
9.1
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
40
Tensile Strength: Ultimate (UTS), MPa 690
350
Tensile Strength: Yield (Proof), MPa 510
190

Thermal Properties

Latent Heat of Fusion, J/g 270
190
Maximum Temperature: Mechanical, °C 760
170
Melting Completion (Liquidus), °C 1450
1030
Melting Onset (Solidus), °C 1410
860
Specific Heat Capacity, J/kg-K 480
370
Thermal Conductivity, W/m-K 27
58
Thermal Expansion, µm/m-K 10
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.5
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
35
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 2.1
3.8
Embodied Energy, MJ/kg 29
61
Embodied Water, L/kg 100
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
27
Resilience: Unit (Modulus of Resilience), kJ/m3 670
170
Stiffness to Weight: Axial, points 14
6.8
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 25
11
Strength to Weight: Bending, points 22
13
Thermal Diffusivity, mm2/s 7.2
18
Thermal Shock Resistance, points 25
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 11.5 to 14
0
Copper (Cu), % 0
82 to 86
Iron (Fe), % 82.1 to 88.4
0 to 0.2
Lead (Pb), % 0
2.0 to 3.2
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0.15 to 1.0
0
Nickel (Ni), % 0 to 1.0
2.8 to 4.0
Phosphorus (P), % 0 to 0.040
0 to 1.5
Silicon (Si), % 0 to 0.65
0 to 0.0050
Sulfur (S), % 0 to 0.040
0 to 0.050
Tin (Sn), % 0
9.0 to 11
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.7