MakeItFrom.com
Menu (ESC)

ACI-ASTM CA40 Steel vs. C12600 Copper

ACI-ASTM CA40 steel belongs to the iron alloys classification, while C12600 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CA40 steel and the bottom bar is C12600 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 10
56
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
56
Tensile Strength: Ultimate (UTS), MPa 910
270
Tensile Strength: Yield (Proof), MPa 860
69

Thermal Properties

Latent Heat of Fusion, J/g 280
210
Maximum Temperature: Mechanical, °C 750
200
Melting Completion (Liquidus), °C 1440
1080
Melting Onset (Solidus), °C 1500
1030
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 25
130
Thermal Expansion, µm/m-K 10
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
29
Electrical Conductivity: Equal Weight (Specific), % IACS 3.5
29

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
30
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 2.0
2.6
Embodied Energy, MJ/kg 28
41
Embodied Water, L/kg 100
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89
110
Resilience: Unit (Modulus of Resilience), kJ/m3 1910
21
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 33
8.2
Strength to Weight: Bending, points 27
10
Thermal Diffusivity, mm2/s 6.7
39
Thermal Shock Resistance, points 33
9.5

Alloy Composition

Carbon (C), % 0.2 to 0.4
0
Chromium (Cr), % 11.5 to 14
0
Copper (Cu), % 0
99.5 to 99.8
Iron (Fe), % 81.5 to 88.3
0
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.040
0.2 to 0.4
Silicon (Si), % 0 to 1.5
0
Sulfur (S), % 0 to 0.040
0