MakeItFrom.com
Menu (ESC)

ACI-ASTM CB30 Steel vs. 2025 Aluminum

ACI-ASTM CB30 steel belongs to the iron alloys classification, while 2025 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CB30 steel and the bottom bar is 2025 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
110
Elastic (Young's, Tensile) Modulus, GPa 200
72
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
27
Tensile Strength: Ultimate (UTS), MPa 500
400
Tensile Strength: Yield (Proof), MPa 230
260

Thermal Properties

Latent Heat of Fusion, J/g 290
400
Maximum Temperature: Mechanical, °C 940
190
Melting Completion (Liquidus), °C 1430
640
Melting Onset (Solidus), °C 1380
520
Specific Heat Capacity, J/kg-K 480
870
Thermal Conductivity, W/m-K 21
150
Thermal Expansion, µm/m-K 11
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
40
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
120

Otherwise Unclassified Properties

Base Metal Price, % relative 10
10
Density, g/cm3 7.7
3.0
Embodied Carbon, kg CO2/kg material 2.3
7.9
Embodied Energy, MJ/kg 33
150
Embodied Water, L/kg 130
1130

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 140
450
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 18
37
Strength to Weight: Bending, points 18
40
Thermal Diffusivity, mm2/s 5.6
58
Thermal Shock Resistance, points 17
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
90.9 to 95.2
Carbon (C), % 0 to 0.3
0
Chromium (Cr), % 18 to 21
0 to 0.1
Copper (Cu), % 0 to 1.2
3.9 to 5.0
Iron (Fe), % 72.9 to 82
0 to 1.0
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0.4 to 1.2
Nickel (Ni), % 0 to 2.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
0.5 to 1.2
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15