MakeItFrom.com
Menu (ESC)

ACI-ASTM CF8M Steel vs. Grade 38 Titanium

ACI-ASTM CF8M steel belongs to the iron alloys classification, while grade 38 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CF8M steel and the bottom bar is grade 38 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 50
11
Fatigue Strength, MPa 280
530
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 78
40
Tensile Strength: Ultimate (UTS), MPa 540
1000
Tensile Strength: Yield (Proof), MPa 290
910

Thermal Properties

Latent Heat of Fusion, J/g 300
410
Maximum Temperature: Mechanical, °C 1000
330
Melting Completion (Liquidus), °C 1440
1620
Melting Onset (Solidus), °C 1400
1570
Specific Heat Capacity, J/kg-K 480
550
Thermal Conductivity, W/m-K 16
8.0
Thermal Expansion, µm/m-K 16
9.3

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
1.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 19
36
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 3.8
35
Embodied Energy, MJ/kg 53
560
Embodied Water, L/kg 160
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
110
Resilience: Unit (Modulus of Resilience), kJ/m3 210
3840
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 19
62
Strength to Weight: Bending, points 19
49
Thermal Diffusivity, mm2/s 4.3
3.2
Thermal Shock Resistance, points 12
72

Alloy Composition

Aluminum (Al), % 0
3.5 to 4.5
Carbon (C), % 0 to 0.080
0 to 0.080
Chromium (Cr), % 18 to 21
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 60.3 to 71
1.2 to 1.8
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 9.0 to 12
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0.2 to 0.3
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
0
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
89.9 to 93.1
Vanadium (V), % 0
2.0 to 3.0
Residuals, % 0
0 to 0.4