MakeItFrom.com
Menu (ESC)

ACI-ASTM CG6MMN Steel vs. C61400 Bronze

ACI-ASTM CG6MMN steel belongs to the iron alloys classification, while C61400 bronze belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CG6MMN steel and the bottom bar is C61400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
34 to 40
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 79
43
Tensile Strength: Ultimate (UTS), MPa 670
540 to 570
Tensile Strength: Yield (Proof), MPa 320
220 to 270

Thermal Properties

Latent Heat of Fusion, J/g 300
220
Maximum Temperature: Mechanical, °C 1080
220
Melting Completion (Liquidus), °C 1420
1050
Melting Onset (Solidus), °C 1380
1040
Specific Heat Capacity, J/kg-K 480
420
Thermal Expansion, µm/m-K 17
18

Otherwise Unclassified Properties

Base Metal Price, % relative 22
28
Density, g/cm3 7.8
8.5
Embodied Carbon, kg CO2/kg material 4.8
3.0
Embodied Energy, MJ/kg 68
48
Embodied Water, L/kg 180
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
160 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 260
210 to 310
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 24
18 to 19
Strength to Weight: Bending, points 22
17 to 18
Thermal Shock Resistance, points 14
18 to 20

Alloy Composition

Aluminum (Al), % 0
6.0 to 8.0
Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 20.5 to 23.5
0
Copper (Cu), % 0
86 to 92.5
Iron (Fe), % 51.9 to 62.1
1.5 to 3.5
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 4.0 to 6.0
0 to 1.0
Molybdenum (Mo), % 1.5 to 3.0
0
Nickel (Ni), % 11.5 to 13.5
0
Niobium (Nb), % 0.1 to 0.3
0
Nitrogen (N), % 0.2 to 0.4
0
Phosphorus (P), % 0 to 0.040
0 to 0.015
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Vanadium (V), % 0.1 to 0.3
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5