MakeItFrom.com
Menu (ESC)

ACI-ASTM CH20 Steel vs. AWS ERNiFeCr-2

ACI-ASTM CH20 steel belongs to the iron alloys classification, while AWS ERNiFeCr-2 belongs to the nickel alloys. They have 51% of their average alloy composition in common. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CH20 steel and the bottom bar is AWS ERNiFeCr-2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 38
28
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 78
75
Tensile Strength: Ultimate (UTS), MPa 610
1300

Thermal Properties

Latent Heat of Fusion, J/g 310
310
Melting Completion (Liquidus), °C 1410
1460
Melting Onset (Solidus), °C 1430
1410
Specific Heat Capacity, J/kg-K 480
450
Thermal Conductivity, W/m-K 14
12
Thermal Expansion, µm/m-K 15
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 20
75
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 3.7
13
Embodied Energy, MJ/kg 53
190
Embodied Water, L/kg 180
250

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 22
43
Strength to Weight: Bending, points 21
32
Thermal Diffusivity, mm2/s 3.7
3.2
Thermal Shock Resistance, points 15
38

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0.2 to 0.8
Boron (B), % 0
0 to 0.0030
Carbon (C), % 0 to 0.2
0 to 0.080
Chromium (Cr), % 22 to 26
17 to 21
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 54.7 to 66
11.6 to 24.6
Manganese (Mn), % 0 to 1.5
0 to 0.35
Molybdenum (Mo), % 0 to 0.5
2.8 to 3.3
Nickel (Ni), % 12 to 15
50 to 55
Niobium (Nb), % 0
4.8 to 5.5
Phosphorus (P), % 0 to 0.040
0 to 0.015
Silicon (Si), % 0 to 2.0
0 to 0.35
Sulfur (S), % 0 to 0.040
0 to 0.015
Titanium (Ti), % 0
0.65 to 1.2
Residuals, % 0
0 to 0.5